

April, 2022 - Release 1.2

Integrating IBM zUnit Testing

into an open and modern

CI/CD pipeline

An IBM Document from

IBM Z DevOps Acceleration Program

Abstract
Configure and run zUnit tests using Git, DBB, IBM Developer for z/OS, and

Jenkins or GitLab

David Rice
drice@us.ibm.com

Dennis Behm
dennis.behm@de.ibm.com

Mathieu Dalbin
mathieu.dalbin@fr.ibm.com

mailto:mail@ibm.com
mailto:mail@ibm.com

Integrating IBM zUnit Testing into an open and modern CI/CD pipeline Page 2/34

Table of content

1 INTRODUCTION ..3

2 REQUIRED CONFIGURATION ...4

2.1 OVERVIEW OF APPLICATION REPOSITORY STRUCTURE .. 4

2.2 ZAPPBUILD APPLICATION-SPECIFIC SETTINGS .. 5
2.2.1 Application-Conf properties .. 5
2.2.2 Parametrization of build.groovy ... 9

2.3 REQUIRED IDZ CLIENT CONFIGURATION ... 9

3 WORKFLOW ... 10

3.1 CREATE THE TEST CASE, RECORD DATA, AND GENERATE TEST CASE ... 10

3.2 ZAPPBUILD’S IMPACT BUILD AFTER CHANGING THE TEST SETUP ... 17

3.3 ZAPPBUILD’S IMPACT BUILD AFTER CHANGING AN APPLICATION PROGRAM ... 22

4 PUBLISHING THE UNIT TESTS RESULTS INTO THE PIPELINE ... 24

5 INTEGRATING CODE COVERAGE IN ZUNIT TESTINGS .. 27

5.1 SETTING UP THE CODE COVERAGE HEADLESS COLLECTOR ON Z/OS ... 28

5.2 ENABLING CODE COVERAGE IN THE ZUNIT TESTS .. 28
5.2.1 Running the pipeline in Jenkins ... 29
5.2.2 Running the pipeline in GitLab .. 31

5.3 EXPLOITING CODE COVERAGE RESULTS .. 32

6 SUMMARY ... 34

Integrating IBM zUnit Testing into an open and modern CI/CD pipeline Page 3/34

1 Introduction

With the June/July 2020 releases of IBM Dependency Based Build, IBM Developer for z/OS (IDz) and the

sample build framework zAppBuild (which leverages DBB’s capabilities), it is now possible to easily

integrate the execution of unit tests in an open and modern CI/CD pipeline.

The purpose of this document is to outline the steps to configure and run zUnit Test cases as part of a

CI/CD pipeline.

This document will assume that the following tools have already been installed and configured:

• Rocket Software’s Git,

• IBM DBB Toolkit (v1.0.9.ifix1 or newer), 1

• IBM DBB zAppBuild framework, 2

• Jenkins Server and Agent, or GitLab Server and Runner,

• IBM Developer for z/OS (IDz >= v14.2.3) including the z/OS Dynamic Test Runner. 3

With the above software levels, the build framework is capable to understand the dependencies between

the application and IDz zUnit test configuration artifacts.

Instructions for installing and configuring them can be found at IBM’s Knowledge Center:

https://www.ibm.com/support/knowledgecenter/

Technical papers on these topics can be found in the DAP resource page:

https://ibm.github.io/mainframe-downloads/DevOps_Acceleration_Program/resources.html

1 https://www.ibm.com/support/pages/fix-list-ibm-dependency-based-build
2 https://github.com/IBM/dbb-zappbuild
3 https://www.ibm.com/support/pages/fix-list-ibm-developer-z-systems-and-ibm-developer-z-systems-enterprise-
edition

https://www.ibm.com/support/knowledgecenter/
https://ibm.github.io/mainframe-downloads/DevOps_Acceleration_Program/resources.html
https://www.ibm.com/support/pages/fix-list-ibm-dependency-based-build
https://github.com/IBM/dbb-zappbuild
https://www.ibm.com/support/pages/fix-list-ibm-developer-z-systems-and-ibm-developer-z-systems-enterprise-edition
https://www.ibm.com/support/pages/fix-list-ibm-developer-z-systems-and-ibm-developer-z-systems-enterprise-edition

Integrating IBM zUnit Testing into an open and modern CI/CD pipeline Page 4/34

2 Required configuration

This section provides an overview of the necessary configuration of the application repository, which plans

to integrate zUnit tests into their pipeline.

The required modifications to the global configuration will affect different areas:

• for convenience, additional subfolders to manage the zUnit test artifacts will need to be created,

• specific settings located in the application-conf folder will be customized,

• finally, some IDz workstation preferences will be modified accordingly.

2.1 Overview of Application repository structure

In addition to your standard application folders, zUnit now has the ability to store test artifacts into

multiple directories in the local project, which should be managed in a git repository.

With that capability, it is far easier to manage the zUnit test files for processing with DBB and zAppBuild,

as everything is located in the git repository and can be shared between the developers. You can version

control all the unit test related artifacts along with your source files.

The basic structure should look like the following:

The zUnit related folders are:

• testcase – This is where the generated zUnit test cases are stored.

• testcase-data – This is where the test case generation configuration (*.json) are stored.

• testplayfiles - This is where the zUnit playback files are stored.

• testcfg – This is where the zUnit runner configuration files (or bzucfg files) are stored. These

bzucfg files are key to processing zUnit test cases from a pipeline as they point to the test case

and testplayfile.

Note: The above names of these subdirectories can be customized to your naming conventions. Also, it is

possible to manage the different subdirectories nested in a folder zunit_tests to avoid having too many

folders next to the actual application code itself.

Integrating IBM zUnit Testing into an open and modern CI/CD pipeline Page 5/34

2.2 zAppBuild application-specific settings

2.2.1 Application-Conf properties

In order to make zUnit run in a zAppBuild build, you will need to set the following properties in the

application configuration of the application repository.

A sample template of the property files is provided via zAppBuild at https://github.com/IBM/dbb-

zappbuild/tree/development/samples/application-conf

2.2.1.1 application.properties

The following table provides a list of necessary properties to run zUnit within zAppBuild, which are

configured in the application.properties file.

Property Description Additional Comments

runzTests=true set to “true”, zAppBuild will build and execute
the zUnit tests found in the repository.

This is optional, there
is also a command line
Boolean property you
can set -zTest or --
runzTests

applicationPropFiles Add a reference to the new
ZunitConfig.properties file

testOrder=ZunitConfig.groovy build.groovy will execute the scripts defined in
the testOrder after it has the processed the
language scripts defined in the buildOrder.

jobCard The ZunitConfig.groovy script generates and

runs a JCL. Specify the job card according to
your environment specifics.

Additionally, you can
use a jobname which
relates to your
application.

impactResolutionRules Add the below resolution rules related to unit
tests for understanding the dependencies in
an Impact Build scenario

testconfigRule Defines the resolution rule for the test
configuration files. The dependency of library
“SYSPROG” will be resolved to files located in
the specified folder of this rule

Dependencies are
described via library
SYSPROG

testcaseRule Defines the resolution rule for the test play
files. The dependency of library “SYSPLAY” will
be resolved to files located in the specified
folder of this rule

Dependencies are
described via library
SYSPLAY

https://github.com/IBM/dbb-zappbuild/tree/development/samples/application-conf
https://github.com/IBM/dbb-zappbuild/tree/development/samples/application-conf

Integrating IBM zUnit Testing into an open and modern CI/CD pipeline Page 6/34

For reference, see below a sample of these definitions. You have the complete set in the zAppBuild

repository mentioned previously.

Run zUnit Tests
Defaults to "false", to enable, set to "true"
#runzTests=true

Comma seperated list of the test script processing order
testOrder=ZunitConfig.groovy

Job card, please use \n to indicate a line break and use \ to break the line in this
property file
Example: jobCard=//RUNZUNIT JOB ,MSGCLASS=H,CLASS=A,NOTIFY=&SYSUID,REGION=0M
jobCard=//RUNZUNIT JOB ,MSGCLASS=H,CLASS=A,NOTIFY=&SYSUID,REGION=0M

Impact analysis resolution rules (JSON format).
Defaults to just looking for local application dependency folders
impactResolutionRules=[${copybookRule},${plincRule},${maclibRule},${testcaseRule},${testconfig
Rule}]

testconfigRule = {"library": "SYSPROG", \
 "searchPath": [\
 {"sourceDir": "${workspace}", "directory": "${application}/testcfg"} \
] \
 }

testcaseRule = {"library": "SYSPLAY", \
 "searchPath": [\
 {"sourceDir": "${workspace}", "directory": "${application}/testplayfiles"} \
] \
 }

Integrating IBM zUnit Testing into an open and modern CI/CD pipeline Page 7/34

2.2.1.2 file.properties

The following properties managed in the file.properties file define necessary mappings for processing the

test artifacts during a zAppBuild build process.

Property Description Additional Comments

dbb.scriptMapping =
ZunitConfig.groovy ::
**/*.bzucfg

The bzucfg files in your application
repository contain the test runner
configuration and needs to be processed by
the new ZunitConfig.groovy language script.
You describe here the config files mapped to
this script.

dbb.scannerMapping =
ZUnitConfigScanner ::
**/*.bzucfg

The bzucfg file is not a standard enterprise
source code. There is a new scanner
embedded in the DBB toolkit starting
v.1.0.9.ifix1 to handle it.

This mapping it necessary to map the config
files to the right scanner.

cobol_testcase = true ::
**/testcase/*.cbl

The standard Cobol.groovy language script
will be used to compile and link the
generated test case. This file level property
allows to identify the test case programs
specifically in the scripts and handle special
cases for them.

Even if testcases are
COBOL programs, they
certainly need to be
handled differently
from the other COBOL
programs: It is a
recommendation to
target separate libraries
for source and build
outputs. Please also see
the additional library
definitions in build-
conf/Cobol.properties.4

4 https://github.com/IBM/dbb-zappbuild/blob/development/build-conf/Cobol.properties

Integrating IBM zUnit Testing into an open and modern CI/CD pipeline Page 8/34

2.2.1.3 ZunitConfig.properties

The following ZunitConfig.properties application file properties customize your zUnit Test behavior during

a zAppBuild process.

Property Description Additional Comments

zunit_maxPassRC (default is 4) By default, when running a zUnit
Test case, if the test has a return code of 0-4,
it will mark the test as “Passed”, this can be
adjusted based on desired usage.

zunit_maxWarnRC (default is 8) By default, when running a zUnit
Test case, if the test has a return code of >4
and <=8, it will mark the test as “Warning”.

Warnings will not stop the build process but
will create a warning message. Anything
beyond that max return code value will
return a “Failure” and will stop the build
process. this can be adjusted based on
desired usage.

zunit_playbackFileExtension The zUnit playback file is managed as a binary
file. This property indicates to load the
playbackfile as a binary into the target
dataset.

Please make sure, that
the file extension is
mapped to binary in the
.gitattributes file.
Note: a more general
mechanism for handling
binary file will be
introduced in zAppBuild
in the future.

zunit_resolutionRules Links to the resolution rule in
application.properties. This defines the rules
for resolving dependent files (e.g. the zUnit
playback file). These files will be loaded to
the target datasets when processing the
zUnit configuration file (bzucfg) file.

Integrating IBM zUnit Testing into an open and modern CI/CD pipeline Page 9/34

2.2.2 Parametrization of build.groovy

zUnit test cases will not run by default. In order to tell zAppBuild to run them, you either need to set the

runzTests property in the application.properties file as described earlier, or you can alternatively use the

--runzTests flag as a parameter passed when invoking zAppBuild:

-zTest,--runzTests Specify if zUnit Tests should be run

Please also see: https://github.com/IBM/dbb-zappbuild/blob/development/BUILD.md

2.3 Required IDz client configuration

Make sure that the your IDz environment is configured to use the z/OS Dynamic Test Runner.

Please review your IDz settings under Window > Preferences … z/OS Automated Unit Testing Framework.

This will make sure, that the generated test cases use the Dynamic Test Runner.

https://github.com/IBM/dbb-zappbuild/blob/development/BUILD.md

Integrating IBM zUnit Testing into an open and modern CI/CD pipeline Page 10/34

3 Workflow

3.1 Create the Test Case, Record Data, and Generate Test Case

We assume, that you already have cloned your git repository and imported the application project into

the IDz workspace.

To create/modify the Test Case, right-click on the program being tested, in our case lgicdb01.cbl and select

z/OS Automated Unit Testing Framework (zUnit):

This will open a dialog box where we can specify the project, folder and name where the test case

generation configuration file will be placed. In our case, this file is stored in the testcase-data folder.

In the next dialog, select the destination folders for the configuration file, playback file and Test Case

program. Select the destination folders in the project you created and click Next.

Integrating IBM zUnit Testing into an open and modern CI/CD pipeline Page 11/34

It is important to note that DBB requires the files to be located in different subfolders to enable the correct

dependency analysis and resolution.

We are not going to change anything here, but we are going to start recording, so click on the Record data

button on the action bar:

Integrating IBM zUnit Testing into an open and modern CI/CD pipeline Page 12/34

The recording will start when you press the Start Recording button:

As our example is a COBOL/CICS/DB2 program we are going to login to our CICS Region and execute the

transaction with the corresponding COBOL programs. Login to CICS and execute the CICS transaction, in

our case SSC1:

Integrating IBM zUnit Testing into an open and modern CI/CD pipeline Page 13/34

Then perform some function in the transaction, in our example performing a Customer Inquiry:

We have executed our CICS transaction, so we need to make sure that the data set mapping is correct,

especially for the playback file. This file needs to be stored in EBCDIC and in binary such that non-

roundtripable characters are not affected. Go to the z/OS File System Mapping view:

Integrating IBM zUnit Testing into an open and modern CI/CD pipeline Page 14/34

Select the mapping for the playback file if it exists, or right click in the view and select Add Data Set

Mapping if it does not. Remember, right at the beginning, in our preferences, we select the name that

would be used to create the playback file. The mapping we have created aligns with that:

We need to make sure that the transfer mode is set to Binary, and the Host Code Page used is an EBCDIC

one, either IBM-037 or IBM-1047. Once we have checked our settings, we can stop the recording by

clicking the Record Data button again:

Integrating IBM zUnit Testing into an open and modern CI/CD pipeline Page 15/34

When the recording session is stopped the Filter Recorded Data dialog opens. So the next step is to select

the transactions to import.

Click on the Import Selections button and select the RSE connection to the system where the playback file

will be created and click Create, which will create the playback file in a z/OS data set and then import it to

the local project:

Integrating IBM zUnit Testing into an open and modern CI/CD pipeline Page 16/34

Once the connection is selected and the playback file name is confirmed click Create and the playback file

will be created on the z/OS system specified.

Notice in the local project that the playback file now exists, but the test case program and the test

configuration file do not exist yet / or require to be regenerated.

So, go back to our Test case editor view and select the Generate button:

Integrating IBM zUnit Testing into an open and modern CI/CD pipeline Page 17/34

This will generate the relevant zUnit files – the generated test case, the bzucfg test configuration file and

also update the test case generation file:

We are now at a stage, where we can push the changes to the central git provider.

3.2 zAppBuild’s Impact Build after changing the test setup

The zAppBuild framework heavily relies on the commits made in git for Impact Builds.

So, when making changes to zUnit tests (equivalent to the test setup), it is important to make sure the

impacted files are stored into the git repository or are defined in the build scope.

The following files are important and which make up a zUnit test scenario:

• The generated Test case file – a generated Cobol program,

• The bzucfg file – This specific file contains the test configuration. It is not updated all the time,

so you may not push it to the server as often as the other files, because unless you are

adding/changing the playback files, the only changes made to a bzucfg file is a uid. This is not a

problem, as dependencies are established from this file, and when they change, they will trigger

running the test through this file.

• The bzuplay file – it contains the captured data to run the test without an actual execution

environment.

• The zUnit JSON file – this file contains all the needed information about the zUnit tests for the

client tool in IDz. It is not necessary to push this file to git in order to run zUnit tests, that being

said it is important to keep this file tracked in git for version control purposes and to be able to

share the test data configuration with your development peers.

In the above workflow, we created a new test without modifying the application program. Next, we will

commit the new test scenario to git, and run a build using Jenkins. The first step is to commit the changes

and push them to the central git server.

Integrating IBM zUnit Testing into an open and modern CI/CD pipeline Page 18/34

The next time we build using Jenkins or GitLab, the build will pick up these changes.

Jenkins:

GitLab:

Integrating IBM zUnit Testing into an open and modern CI/CD pipeline Page 19/34

With a closer look to the console log, we see that when zAppBuild is invoked, it will add the following files

to the build list.

** Writing build list file to /var/dbb/buildhome/workspace/dbb-zappbuild-
zunit/work/build.20200828.015107.051/buildList.txt
genapp/testcase/Tlgicdb0.cbl
genapp/testcfg/lgicdb01.bzucfg

Let’s have a look to the records in the DBB collection stored on the DBB WebApp. The collection for source

level dependencies contain both the generated test case tlgicdb0.cbl and the test configuration file

lgicdb01.bzucfg.

The generated COBOL test case references a system copybook. Which is included to the SYSLIB

concatenation through the setting BZUSAMP in build-conf/dataset.properties.

Integrating IBM zUnit Testing into an open and modern CI/CD pipeline Page 20/34

The data which was captured for the test configuration file connects the test configuration file bzucfg

with the application program, the generated test case and the playback file.

Based on this information the

dependency resolver is capable to

understand the dependencies.

The generated test case will be compiled and linked through the COBOL.groovy language script but will

be stored in a different output dataset.

Integrating IBM zUnit Testing into an open and modern CI/CD pipeline Page 21/34

Let’s have a closer look to the processing of the test case configuration file bzucfg, while the --verbose

option was specified to zAppBuild.

Action Console log

zAppBuild resolve
dependencies and
load them to the
build datasets
including the
bzuplay file.

** Building files mapped to ZunitConfig.groovy script
*** Building file genapp/testcfg/lgicdb01.bzucfg
*** Creating dependency resolver for genapp/testcfg/lgicdb01.bzucfg
with [{"library": "SYSPLAY", "searchPath": [{"sourceDir":
"/var/dbb/buildhome/workspace/dbb-zappbuild-zunit/genapp-zunit",
"directory": "genapp/testplayfiles"}] }] rules
*** Scanning file with the ZUnitConfigScanner
*** Resolution rules for /var/dbb/buildhome/workspace/dbb-zappbuild-
zunit/genapp-zunit/genapp/testcfg/lgicdb01.bzucfg:
{"library":"SYSPLAY","searchPath":[{"sourceDir":"\/var\/dbb\/buildhome\
/workspace\/dbb-zappbuild-zunit\/genapp-
zunit","directory":"genapp\/testplayfiles"}]}
*** Physical dependencies for /var/dbb/buildhome/workspace/dbb-
zappbuild-zunit/genapp-zunit/genapp/testcfg/lgicdb01.bzucfg:
{"sourceDir":"\/var\/dbb\/buildhome\/workspace\/dbb-zappbuild-
zunit\/genapp-
zunit","lname":"LGICDB01","library":"SYSPLAY","file":"genapp\/testplayf
iles\/lgicdb01.plbck","category":"ZUNITINC","resolved":true}

Generated JCL will
be displayed

//RUNZUNIT JOB ,MSGCLASS=H,CLASS=A,NOTIFY=&SYSUID,REGION=0M
//*
//BADRC EXEC PGM=IEFBR14
//DD DD DSN=&SYSUID..BADRC,DISP=(MOD,CATLG,DELETE),
// DCB=(RECFM=FB,LRECL=80),UNIT=SYSALLDA,
// SPACE=(TRK,(1,1),RLSE)
//*
//* Action: Run Test Case...
//RUNNER EXEC PROC=BZUPPLAY,
// BZUCFG=DRICE.DBB.ZUNITPL.BZU.BZUCFG(LGICDB01),
// BZUCBK=DRICE.DBB.ZUNITPL.TEST.LOAD,
// BZULOD=DRICE.DBB.ZUNITPL.LOAD,
// PARM=('STOP=E,REPORT=XML')
//BZUPLAY DD DISP=SHR,
// DSN=DRICE.DBB.ZUNITPL.BZU.BZUPLAY(LGICDB01)
//BZURPT DD DISP=SHR,
// DSN=DRICE.DBB.ZUNITPL.BZU.BZURPT(LGICDB01)
//*
//IFGOOD IF RC<=4 THEN
//GOODRC EXEC PGM=IEFBR14
//DD DD DSN=&SYSUID..BADRC,DISP=(MOD,DELETE,DELETE),
// DCB=(RECFM=FB,LRECL=80),UNIT=SYSALLDA,
// SPACE=(TRK,(1,1),RLSE)
// ENDIF

Reporting the result
and store
information in the
build result

*** zUnit Test Job RUNZUNIT(JOB04033) completed with 0
****************** Module [TLGICDB0] ******************
Name: TLGICDB0
Status: pass
Test cases: 1 (1 passed, 0 failed, 0 errors)
Details:
 TEST2 pass
****************** Module [TLGICDB0] ******************
** Writing build report data to /var/dbb/buildhome/workspace/dbb-
zappbuild-zunit/work/build.20200828.015107.051/BuildReport.json
** Writing build report to /var/dbb/buildhome/workspace/dbb-zappbuild-
zunit/work/build.20200828.015107.051/BuildReport.html
** Updating build result BuildGroup:genapp-newFormat
BuildLabel:build.20200828.015107.051

Integrating IBM zUnit Testing into an open and modern CI/CD pipeline Page 22/34

3.3 zAppBuild’s Impact Build after changing an application program

In the previous section, we walked through the process of modifying the test case, pushing to git, and

running a pipeline with a CI orchestrator. In this step we will show the workflow of modifying the

application code rather than the test case.

In this example we will assume a change was made to the application code.

The first step is to commit the changes and push of the application program lgicdb01.cbl to the central git

server.

The next time we build, the build will pick up this change.

Jenkins:

Integrating IBM zUnit Testing into an open and modern CI/CD pipeline Page 23/34

GitLab:

With a closer look to the console log, we, see that when zAppBuild is invoked, it will add the modified file

lgicdb01.cbl and its impacted files to the build list.

The test configuration file lgicdb01.bzucfg is added to the build list as an impacted file. This is a result of

our configurations and DBBs understanding about the dependencies between the application source code

and available test configurations – which are represented through the zUnit test configuration files. With

the new scanner capability, the zUnit test configuration files are scanned, and the dependencies get

captured and stored in the DBB webapp.

** Performing impact analysis on changed file genapp/cobol/lgicdb01.cbl
*** Creating impact resolver for genapp/cobol/lgicdb01.cbl with [{"library": "SYSLIB",
"searchPath": [{"sourceDir": "/var/jenkins/workspace/genapp-zunit/genapp", "directory":
"genapp/copy"}] },{"library": "SYSLIB", "searchPath": [{"sourceDir":
"/var/jenkins/workspace/genapp-zunit/genapp", "directory": "genapp/bms"}]
},{"category": "LINK", "searchPath": [{"sourceDir": "/var/jenkins/workspace/genapp-
zunit/genapp", "directory": "genapp/cobol"}, {"sourceDir": "/var/jenkins/workspace/genapp-
zunit/genapp", "directory": "genapp/link"}] },{"library": "SYSPLAY",
"searchPath": [{"sourceDir": "/var/jenkins/workspace/genapp-zunit/genapp", "directory":
"genapp/testplayfiles"}] },{"category": "ZUNITINC", "searchPath": [{"sourceDir":
"/var/jenkins/workspace/genapp-zunit/genapp", "directory": "genapp/testcfg"}, {"sourceDir":
"/var/jenkins/workspace/genapp-zunit/genapp", "directory": "genapp/testcase"}] }]
rules
** Found impacted file genapp/testcfg/lgicdb01.bzucfg
** genapp/testcfg/lgicdb01.bzucfg is impacted by changed file genapp/cobol/lgicdb01.cbl.
Adding to build list.
** Writing build list file to /var/dbb/buildhome/workspace/dbb-zappbuild-
zunit/work/build.20200831.050224.002/buildList.txt
genapp/cobol/lgicdb01.cbl
genapp/testcfg/lgicdb01.bzucfg

The application will be compiled and linked through the COBOL.groovy language script, while the test

configuration file is processes by the ZunitConfig.groovy script. Please see the previous section for the

console log.

Integrating IBM zUnit Testing into an open and modern CI/CD pipeline Page 24/34

4 Publishing the Unit tests results into the pipeline

After the execution of Unit tests, the test results are generated into several files that can uploaded for

archiving purposes in the pipeline.

• *zunit.jcl.log contains the spool of the job

• *.zunit.report.log contains the BZU report

With Jenkins, you can store these test results with the publisher plugin:

With GitLab, you can archive these files through the artifact keyword of the CI/CD pipeline. For the stages

that produce such artifacts, a download button is available, or artifacts can be browsed through the GitLab

interface:

Integrating IBM zUnit Testing into an open and modern CI/CD pipeline Page 25/34

zUnit test results can be transformed with the help of an XSL transformation process into standard

industry reports for unit test results (like JUNIT or SonarQube).

You can easily transform the zUnit report into the JUnit format, which can be added to the pipeline build

result as well.

For Jenkins, a call to the IBM z/OS XML toolkit program Xalan can be integrated into the Jenkins pipeline

like this:

sh "Xalan -o ${WORKSPACE}/work/junit.xml ${WORKSPACE}/work/*/*.zunit.report.log
/var/dbb/extensions/zunit2junit/AZUZ2J30.xsl"

Note: The XSL schemas definitions are provided via the IDz server

installation. You find them in the USS installation directory within the

samples/zunit/xsl subfolder.

Use AZUZ2J30 to converts the zUnit report of the Dynamic Test Runner

into a JUnit execution report file. AZUZ2S30 converts the zUnit report

into a SonarQube execution report file.

The Jenkins JUnit plugin will visualized the report in the dashboard for the Jenkins pipeline:

Integrating IBM zUnit Testing into an open and modern CI/CD pipeline Page 26/34

In the GitLab pipeline, the same utility can be invoked to generate JUnit compatible files:

for f in `ls $CI_PROJECT_DIR/BUILD-$CI_PIPELINE_ID/build*/*.zunit.report.log`; do Xalan -o
$f.xml $f /var/dbb/extensions/zunit2junit/AZUZ2J30.xsl; done;

The test results are automatically presented in under the Tests tab for each pipeline execution:

Integrating IBM zUnit Testing into an open and modern CI/CD pipeline Page 27/34

5 Integrating Code Coverage in zUnit testings

IBM Developer for z/OS and IBM Debug for z/OS provide a feature called Code Coverage, which enables

the developer to understand which lines of the application code was executed. Code coverage information

is very relevant when implementing a unit testing practice.

The Code Coverage feature is usually accessible from a graphical interface for the developer (either IBM

Developer or z/OS or Visual Studio Code), but it is also a step of pipelines as well. In context with unit

testing, it will document which application code was tested and provides information about the test

coverage of an application.

With the Code Coverage Headless Collector daemon, the recoding of test coverage can be integrated into

the automated CI/CD pipeline. The documentation on how to setup the headless daemon is available at:

https://www.ibm.com/support/knowledgecenter/en/SSQ2R2_15.0.0/com.ibm.debug.pdt.codecoverage

.zpcl.doc/topics/tcchlsdm.html

The Code Coverage Headless collector is available on x86 as well as on z/OS. In this scenario, the Headless

Collector on z/OS is configured - close to where the zUnit tests are executed. It is executed as a Started

Task (STC) on z/OS, which launches a daemon task on z/OS Unix System Services (USS)5.

The startup script passes a TCP/IP port to the daemon, where it will listen for incoming connections.

Additional parameters can be passed to the daemon, especially the “-P” flag is useful to print the

command key when a Code Coverage session is initialized.6

To collect code coverage information for unit tests, the zAppBuild framework has been enhanced through

zAppBuild’s the pull request #937. Additional parameters are passed to the build scripts to specify:

• the hostname and the port on which the Headless Collector listens,

• additional options for the Code Coverage processing. For instance, you can specify the type of

report that Code Coverage is able to produce (either PDF, SonarQube compatible format, or both)

and the location where to store the reports (please see the -e and -o options in the documentation

of the Code Coverage Collector daemon).

The different options for the Headless Collector are described in this section of the knowledge center:

https://www.ibm.com/support/knowledgecenter/en/SSQ2R2_15.0.0/com.ibm.debug.pdt.codecoverage

.zpcl.doc/topics/tccstartup.html

5 Please note that the setup of a started task is custom to this setup and not part of the standard product
configuration.
6
https://www.ibm.com/support/knowledgecenter/en/SSQ2R2_15.0.0/com.ibm.debug.pdt.codecoverage.zpcl.doc/t
opics/tcchdls.html
7 https://github.com/IBM/dbb-zappbuild/pull/93

https://www.ibm.com/support/knowledgecenter/en/SSQ2R2_15.0.0/com.ibm.debug.pdt.codecoverage.zpcl.doc/topics/tcchlsdm.html
https://www.ibm.com/support/knowledgecenter/en/SSQ2R2_15.0.0/com.ibm.debug.pdt.codecoverage.zpcl.doc/topics/tcchlsdm.html
https://www.ibm.com/support/knowledgecenter/en/SSQ2R2_15.0.0/com.ibm.debug.pdt.codecoverage.zpcl.doc/topics/tccstartup.html
https://www.ibm.com/support/knowledgecenter/en/SSQ2R2_15.0.0/com.ibm.debug.pdt.codecoverage.zpcl.doc/topics/tccstartup.html
https://www.ibm.com/support/knowledgecenter/en/SSQ2R2_15.0.0/com.ibm.debug.pdt.codecoverage.zpcl.doc/topics/tcchdls.html
https://www.ibm.com/support/knowledgecenter/en/SSQ2R2_15.0.0/com.ibm.debug.pdt.codecoverage.zpcl.doc/topics/tcchdls.html
https://github.com/IBM/dbb-zappbuild/pull/93

Integrating IBM zUnit Testing into an open and modern CI/CD pipeline Page 28/34

5.1 Setting up the Code Coverage Headless Collector on z/OS

As the daemon is running as a Started Task, it is defined as a procedure named GLCC in the PROCLIB

concatenation. In our configuration, the following definition is used, triggering the startup script:

//GLCC PROC
//*
//UMASK EXEC PGM=BPXBATCH,DYNAMNBR=30,REGION=0M,TIME=1440,
// PARM='SH umask 000'
//GLCC EXEC PGM=BPXBATCH,DYNAMNBR=30,REGION=0M,TIME=1440,
// PARM='SH /u/gitlab/ccstart.sh'
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//STDENV DD *
_BPXK_AUTOCVT=ON
//*
// PEND

The previous STC definition is shipped as a sample. Please work with your mainframe administration

teams to set this up, while it is not part of the standard product customization.

The sample startup script ccstart.sh contains the following statements and executes the Headless

Collector coming from IBM Debugger for z/OS (which is also available in the IBM Developer for z/OS

installation):

#!/bin/bash
source .bash_profile

export JAVA_HOME=/usr/lpp/java/J8.0_64/
export IBM_JAVA_ENABLE_ASCII_FILETAG=ON
export IBM_JAVA_OPTIONS=""

echo "### Environment Variables ###"
env

/usr/lpp/debug/v15/headless-code-coverage/bin/ccstart.sh -port=8009 -P

This configuration will enable the Code Coverage daemon to listen on port 8009 for incoming connections.

5.2 Enabling Code Coverage in the zUnit Tests

When collecting the Code Coverage information for a program, one important aspect is to include the

required options to enable debugging. Depending on the language and the compiler version, these

parameters can vary. This page lists the compatible options to be used with IBM Debug for z/OS v15:

https://www.ibm.com/support/knowledgecenter/en/SSQ2R2_15.0.0/com.ibm.debug.pdt.codecoverage

.zpcl.doc/topics/compidtcc.html

In our case, we will use a Cobol program compiled with Cobol 6.1 compiler. The options

TEST(EJPD,SOURCE) will be added to the list of compilation options for the program LGICDB01.cbl, for

which we collect Code Coverage information.

In zAppBuild, you can leverage the use of the --debug flag which enables the addition of TEST compilation

options, as defined by the cobol_compileDebugParms for Cobol (also available for other languages).

https://www.ibm.com/support/knowledgecenter/en/SSQ2R2_15.0.0/com.ibm.debug.pdt.codecoverage.zpcl.doc/topics/compidtcc.html
https://www.ibm.com/support/knowledgecenter/en/SSQ2R2_15.0.0/com.ibm.debug.pdt.codecoverage.zpcl.doc/topics/compidtcc.html

Integrating IBM zUnit Testing into an open and modern CI/CD pipeline Page 29/34

In our case, we will enable the TEST options only for one specific file. To do that, we will override the

compilation options for this file, adding a specific entry in the file.properties configuration file:

cobol_compileParms=SOURCE,NOOFFSET,APOST,LIST,FLAG(W,E),NOSEQ,NOCOMPILE(E),TRUNC(BIN),OPTIMIZE
,XMLPARSE(COMPAT),XREF,MAP,SIZE(4000K),TEST(EJPD,SOURCE) :: **/cobol/lgicdb01.cbl

As the zUnit test is part of the zAppBuild build process, additional properties need to be provided to collect

the Code Coverage information. These properties are defined in the ZunitConfig.properties file and help

to define the Headless Collector’s hostname and port, along with additional Code Coverage options.

Alternatively, Code Coverage parameters to the zAppBuild framework can be provided at execution time,

taking precedence over the defined properties. Four parameters can be specified:

• -cc, --ccczUnit: Flag to indicate to collect code coverage reports during zUnit step

• -cch, --cccHost: Headless Code Coverage Collector host (if not specified IDz will be used for

reporting)

• -ccp, --cccPort: Headless Code Coverage Collector port (if not specified IDz will be used for

reporting)

• -cco, --cccOptions: Headless Code Coverage Collector Options

To use the Code Coverage Headless Collector on z/OS, the parameters -cch and -ccp will be used to point

to the z/OS machine where the Collector daemon is running. Specific Code Coverage options can be

passed through the -cco, for instance to specify the type or reports to generate and the location where

the files will be stored.

5.2.1 Running the pipeline in Jenkins

The pipeline definition needs to be updated to reflect the use of these new parameters.

stage("Build & UnitTest") {
 sh "/usr/lpp/dbb/v1r0/bin/groovyz ${dbbZappbuildDir}/build.groovy --sourceDir
${WORKSPACE}/${genappDir} --workDir ${workOutputDir} --hlq JENKINS.GENAPP.DEMO --logEncoding
UTF-8 --application genapp --verbose --fullBuild -cc -cch localhost -ccp 8009 -cco
\"e='CCPDF,CCSONARQUBE',o=${workOutputDir}\" "
}

Please note the imbricated use of single quotes and double quotes and the escaped double quotes -with

backslashes) when specifying the Code Coverage options with the -cco parameter: this is necessary to

prevent quotes processing which would break the content of the string.

The variable ${workOutputDir} will be filled in at the execution of the pipeline and is pointing to the work

directory for this build.

Integrating IBM zUnit Testing into an open and modern CI/CD pipeline Page 30/34

The JCL generated by the ZunitConfig.groovy language script will contain the additional information in the

CEEOPTS DD card, related to the Code Coverage collection. For instance, the following JCL was generated

to enable the Code Coverage collection for the program LGICDB01.cbl:

//RUNNER EXEC PROC=BZUPPLAY,
// BZUCFG=JENKINS.GENAPP.DEMO.BZU.BZUCFG(LGICDB01),
// BZUCBK=JENKINS.GENAPP.DEMO.TEST.LOAD,
// BZULOD=JENKINS.GENAPP.DEMO.LOAD,
// PARM=('STOP=E,REPORT=XML')
//REPLAY.BZUPLAY DD DISP=SHR,
// DSN=JENKINS.GENAPP.DEMO.BZU.BZUPLAY(LGICDB01)
//REPLAY.BZURPT DD DISP=SHR,
// DSN=JENKINS.GENAPP.DEMO.BZU.BZURPT(LGICDB01)
//CEEOPTS DD *
TEST(,,,TCPIP&localhost%8009:*)
ENVAR(
"EQA_STARTUP_KEY=CC,LGICDB01,t=LGICDB01,i=LGICDB01,e='CCPDF,CCSONARQUBE'
,o=/var/jenkins/workspace/genapp-demo/BUILD-61")
/*

The information provided through the -cco parameter (or through the zunit_CodeCoverageOptions

property) is concatenated to a generated string which specifies the name of the load module to test.

Both PDF and SonarQube formats were specified in this request, so the Code Coverage Collector created

the reports in the working directory:

The file LGICDB01_2021_03_04_170104_0129E.pdf contains Code Coverage information in a PDF format,

while the file LGICDB01_2021_03_04_170104_0129E.xml contains SonarQube compatible information.

These files, along with the file sonar-project.properties, can be published to Jenkins or to a SonarQube

server for further processing.

Integrating IBM zUnit Testing into an open and modern CI/CD pipeline Page 31/34

5.2.2 Running the pipeline in GitLab

The same configuration must be put in place when capturing Code Coverage in a GitLab CI/CD pipeline.

As for Jenkins, the GitLab CI/CD.gitlab-ci.yml configuration file must be tailored to integrate the additional

parameters for Code Coverage in the build phase.

GenApp-Build:
 stage: Build
 script:
 - $DBB_HOME/bin/groovyz -Djava.library.path=$DBB_HOME/lib:/usr/lib/java_runtime64
${ZAPPBUILD}/build.groovy --workspace $CI_PROJECT_DIR --workDir $CI_PROJECT_DIR/BUILD-
$CI_PIPELINE_ID --hlq GITLAB.GENAPP.DEMO --logEncoding UTF-8 --application genapp --verbose --
fullBuild -cc -cch localhost -ccp 8009 -cco "e='CCPDF,CCSONARQUBE',o=${CI_PROJECT_DIR}/BUILD-
${CI_PIPELINE_ID}"
 - cd $CI_PROJECT_DIR/BUILD-$CI_PIPELINE_ID/build*
 - for f in `ls $CI_PROJECT_DIR/BUILD-$CI_PIPELINE_ID/build*/*.zunit.report.log`; do
Xalan -o $f.xml $f /var/dbb/extensions/zunit2junit/AZUZ2J30.xsl; done;

Please note the imbricated use of single quotes and double quotes when specifying the -cco parameter.

In this configuration, the output directory will be qualified at the execution of the pipeline and will point

to the work directory used for this GitLab project.

The execution of this pipeline will generate a specific JCL, which contains the necessary information to

perform the Code Coverage collection (for the program LGICDB01):

//RUNNER EXEC PROC=BZUPPLAY,
// BZUCFG=GITLAB.GENAPP.DEMO.BZU.BZUCFG(LGICDB01),
// BZUCBK=GITLAB.GENAPP.DEMO.TEST.LOAD,
// BZULOD=GITLAB.GENAPP.DEMO.LOAD,
// PARM=('STOP=E,REPORT=XML')
//REPLAY.BZUPLAY DD DISP=SHR,
// DSN=GITLAB.GENAPP.DEMO.BZU.BZUPLAY(LGICDB01)
//REPLAY.BZURPT DD DISP=SHR,
// DSN=GITLAB.GENAPP.DEMO.BZU.BZURPT(LGICDB01)
//CEEOPTS DD *
TEST(,,,TCPIP&localhost%8009:*)
ENVAR(
"EQA_STARTUP_KEY=CC,LGICDB01,t=LGICDB01,i=LGICDB01,e='CCPDF,CCSONARQUBE'
,o=/u/gitlab/gitlab-runner/zos/builds/GHWkdySL/0/dat/genapp/BUILD-1027")
/*

Integrating IBM zUnit Testing into an open and modern CI/CD pipeline Page 32/34

In this configuration, similarly to the Jenkins processing, both PDF file and SonarQubes files are generated

in the working directory where the GitLab project was checked out by the pipeline:

Both PDF files and SonarQube files can be uploaded for further processing or for the need of the

developer.

5.3 Exploiting Code Coverage results

As mentioned above, the Code Coverage feature is able to generate different types of reports in various

formats. One of the files that the Code Coverage collector produces, is an archive that contains the Code

Coverage information and results for the executed modules. This archive can be easily recognized with its

.cczip extension.

To extract the relevant information from these archive files, IBM Debug provides APIs which are

documented in the IBM Documentation’s page for IBM Debug for z/OS8. These APIs can be used to browse

the collected content and retrieve the necessary information, to enhance the developer’s experience.

The collected information is specifically useful when Code Coverage occurs as part of Unit Testing

processes in a pipeline execution: this data can be exploited to present additional key metrics to the

developers and release managers. Integrating Test Coverage’s results in the pipeline’s view can help

improving the quality of the tested applications.

To facilitate the extraction of such information, a sample groovy called AnalyzeCodeCoverageReport9 is

available in the IBM/dbb10 repository. This script can be easily integrated in a pipeline definition, just after

the execution of the Code Coverage collection in a Unit test. The following snippet is an example on how

to leverage the AnalyzeCodeCoverageReport in a GitLab CI/CD pipeline:

if [`ls -a *.cczip | wc -l` -gt 0]; then groovyz -cp $DBB_EXTENSIONS/config/ccapi.jar
$DBB_EXTENSIONS/dbb/Pipeline/AnalyzeCodeCoverageReport/AnalyzeCodeCoverageReport.groovy -f `ls
-m *.cczip | sed "s/ //g"`; fi

8 https://www.ibm.com/docs/en/debug-for-zos/15.0?topic=interfaces-code-coverage-api
9 https://github.com/IBM/dbb/tree/main/Pipeline/AnalyzeCodeCoverageReport
10 https://github.com/IBM/dbb

https://www.ibm.com/docs/en/debug-for-zos/15.0?topic=interfaces-code-coverage-api
https://github.com/IBM/dbb/tree/main/Pipeline/AnalyzeCodeCoverageReport
https://github.com/IBM/dbb

Integrating IBM zUnit Testing into an open and modern CI/CD pipeline Page 33/34

In this example, the script will accept a list of comma-separated file names, through the -f/--files

parameter. These files are the .cczip archives created by the Code Coverage collector, which can be

configured to store the output files in a specific folder. This script fragment above lists these files and pass

them to the AnalyzeCodeCoverageReport.groovy script for processing.

The AnalyzeCodeCoverageReport.groovy script then leverages the Code Coverage APIs to extract the Code

Coverage Percentage for each module found in these .cczip files and print the information to the standard

output stream. The Global Percentage, which corresponds to the average value of the Code Coverage

Percentage of all the modules, is also extracted and printed. Here is an example of the output created for

an execution of this script:

** IBM DEBUG Code Coverage details
** Included modules:
DFH0XVDS - Code Coverage Percentage: 26
** Global Code Coverage Percentage: 26

This information is now easily accessible to developers in charge of maintaining the application.

CI orchestrators can also pick that information and present it in their Web UI, to provide additional insights

for all the pipeline stakeholders. This is the case for GitLab CI/CD, which can parse the output log in search

for specific values. Using a regular expression to filter out the necessary information, GitLab CI/CD can

present the extracted value to the Merge Request related to a pipeline execution. The keyword used for

this extraction is coverage, as shown in the following snippet which is an extract of the pipeline definition

file (.gitlab-ci.yml):

Build and Test:
 stage: Build and Test
 coverage: '/Global Code Coverage Percentage: \d+/'
 script:
 - if [`ls -a *.cczip | wc -l` -gt 0]; then groovyz -cp
$DBB_EXTENSIONS/config/ccapi.jar
$DBB_EXTENSIONS/dbb/Pipeline/AnalyzeCodeCoverageReport/AnalyzeCodeCoverageReport.groovy -f `ls
-m *.cczip | sed "s/ //g"`; fi

As displayed on the following picture, the Merge Request for which the pipeline was executed is now

presenting the Test Coverage information:

This information can now be used by the developers and the release managers to ensure the quality of

the tests performed.

Integrating IBM zUnit Testing into an open and modern CI/CD pipeline Page 34/34

6 Summary

IBM Dependency Based Build and IBM Developer for z/OS contribute to the implementation of open and

modern CI/CD pipelines and enable the implementation of a shift-left testing practice and culture.

IBM Developer for z/OS release version 14.2.3 and version 15.0 delivered the redesigned z/OS Dynamic

Test Runner framework which simplifies the implementation of a unit testing practice for Mainframe

development.

While DBB and zAppBuild provide the understanding of the dependencies between the application

programs and available test cases, and which artifacts belong to the test configuration it enables to

execute the unit tests as part of the pipeline.

The integration of the Code Coverage collection in the pipeline is a major value-added feature for

developers who can, at a very early stage, better appreciate the quality of their development, while

measuring their level of test coverage.

